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The Diliberto general perturbation method
based on the theory of periodic surfaces has been
applied in a new and more suitable coordinate system.
As a result, analysis and results have been consider-
ably simplified. An analytic treatment of the time-
angle relationship for this coordinate system has
been developed. By introducing a further change of
variables, low eccentricity singularities have been
eliminated. The special cases of polar and equatorial
orbits have been examined, and convergence of the
method demonstrated in the latter case. Both the

basic and the low eccentricity method have been

tested numerically. _ (:I/\K:CfE4~u
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FINAL REPORT

EARTH SATELLITE ORBIT COMPUTATIONS

Part I - The Diliberto Theory

INTRODUCTION

The earth's axisymmetric gravitational potential is conveniently
written as a function of two variables u and v, where u is the reciprocal
of the geocentric distance and v is the sine of the geocentric latitude.
The orbit of a near earth satellite is then essentially determined by the

solutions of the non-linear ordinary differential equations

2

d’u du av
“"‘é“"u”Fl(u,E‘;)V:a';)?\):
dw

(1)
QEX rv=F o(u, 3 v, T o)
de - 2 2 aw’ "’ aw’ ’

where w is a timelike variable, and A is a small parameter measuring the
oblateness of the earth.
It can be shown that v = sin 1 sin B, dv/aw = sin i cos B, where

i is the inclination of the orbit plane and B is the argument of the latitude.
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Therefore, the solutions of (1) determine the position of the safellite in
the orbit plane together with the plane’s inclination. The longitude of
the ascending node and the relationship between w and t must be found by
quadratures, |
Since an exact representation of the solutions is unavailable
except in certain special cases, such as an orbit lying in the earth's
equatorial plane, approximating formulas have been generated by various
methods. Most of these methods assume that the solutions can be represented

by expansions in terms of doubly periodic functions u o, vﬁ,

©

) w8y, 8)

n=0

c
]

(2)

<
]

) Wy, By 8y
n=0

where the variables §, and ¢2 are solutions to

ag =
e R R S WCHRY (3)

n=1
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In this context, a doubly periodic function has period 2nx in each of the
variables ¢l and ¢2.

There is considerable flexibility in the selection of the
variables ¢1 and ¢2. Because of this, term by term comparison of
different general perturbation schemes is extremely difficult. The
variables ¢J are usually related to inplane angles such as the true anomaly
or the argument of the latitude, but this is not always the case. The
differential equations (3) are sometimes defined inductively, using the
requirement that the function u, and Va be double periodic. If this
approach is used, some process of 'removing the secular terms" is required.

Equations (2) and (3) define a transformation of coordinates
from u, du/dw, v, dv/dw to u, v, ¢1, ¢2. Unless care is taken, this
transformation can be singular for nearly circular orbits. Another feature
of general perturbation schemes is the failure of the terms in the

expansion (2) to be defined at the critical inclination, cos2

i=1/5.

The representation (2) can be interpreted as defining a torus-
like surface in the four dimensional phase space of the variables u, du/dw,
v, dv/dw. This periodic surface is an invariant manifold of the system (1)
in that it is generated by the solutions to the differential equatioms.

The motion on the surface is governed by equation (3).

S. P. Diliberto recognized that the invariant manifold which is

implicit in the representation (2) can be considered as the intersection
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of the manifolds defined by two periodic integrals, the first of these being
the known energy integral. The second, he conjectured to be associated
with the angular momentum of the satellite in that the vanishing of the
oblatenéss parameter A implies that the second integral is a statement of
the conservation of angular momentum.

This geometric interpretation has led to a systematic method [2,3]
for generation the terms in the expansion (2). This method has three
principal steps:

1) Developing an expsnsion fdr the conjectured periodic
integral,

2) Inverting this integral simultaneously with the known
energy integral to obtain equations of a surface which
approximates the periodic surface,

3) Deriving approximations to the solutions on the surface.

Further details are given in Sections 3 and U4, where some material from
previous work [2, 3] is repeated, considerably revised, for the sake of
better expositiono It has been shown that a formel expansion of this sort
exists; that is, the doubly periodic functions w and v, can be calculated,
but the convergence of the process has not been established except for the
somevhat trivial case of equatorial orbits {Section 9).

In this report, the Diliberto expansion procedure is applied in a

coordinate system which proves to be more suitable than that introduced in [3],
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as is quite evident when corresponding formulas are compared. Despite this
simplification, extension of the results to second order effects of the
second harmonic and first order effects of the third and fourth harmonics
in the gravitational potential is tooc large a task to include in the
present study. In the new coordinate system, as well as in the old,
singularities arise at certain special values of the parameters. Those
occurring at zero eccentricity are removed by a further change of variable
set forth in Section 2, and polar (cos i1 = 0) orbits are treated in
Section 8, but near-polar (cos i = 0) and near-critical (cos2 i=1/5)
inclinations are not considered. FORTRAN programs for the IBM TO90 have
been written and used in numerical tests of both the basic and the low
eccentricity methods; summaries of formulas and fesults will be found in -
Sections 5 and 7.

As indicated above, once (1) is solved it is still necessary to
find Q, the longitude of the ascending node,.and the relationship between
w and t by quadratures. The snalysis for Q is trivial, but the angle~time
relationship is another matter. The problem is attacked in Section 6 and
& solution is, indeed, obtained; however, one which, on account of its
extreme complexity, leaves much to be desired.

Two further aspects of the study may be mentioned: the example
of Section 10 which shows how an inopportune choice of coordinates may
conceal the existence of periodic surfaces, and the qualitative properties

of equatorial orbits deduced in Section 9.




8619-6004-TU-000
Page 6

In addition to S. P. Diliberto, contributors to this report are
E. B. Collins, A. H. Halpin, W. T. Kyner, B. Sherman, and O. K. Smith. ,
Responsibility for final revision and editing rests with the last named.

The two progré.ms were written by J. Ayers, A. H, O'lLeary, and J. L. Tobey.
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1. EQUATIONS OF MOTION

The differential equations describing the motion of & near
earth satellite have been expressed in meny coordinate systems. Here
they are derived relative to a moving coordinaste system which has one
axis parallel to the angular momentum vector and another parallel to
the position vector. The final form of the differential equations is
suitable for application of the Diliberto expansion procedure described
in subsequent sections.

The center of the earth is taken as the origin of the
coordinate system and is assumed to be fixed in space. The position of
the satellite at time t is defined by the vector ;(t) satisfying the

equation

(1.1)

H
u
1=

Since we neglect all forces except the gravitational attraction of

the earth, the force is derivable.from a potential function U

1=
]
t

grad U

The moving coordinate system is determined by three

unit vectors P, @, and R. The vector P is parallel to the position
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vector r; the vector R is parallel to the angular momentum vector H.

Therefore

=

I
I
]
i<

]
]

| Ra]
I
H
(Rg°]
-

Q=RxP,

where H and r are the lengths of the vectors H and r and v = dr/dt.
The moving triad P, Q, R is described relative to an inertial triad
i, J, k (k directed northward along the polar axis) by the Eulerian

angles 1, Q, B where

i = the inclination of the orbit plane,
! = the longitude of the ascending node
8 = the argument of the latitude

(see [6], pages 183 - 184; we use B instead of u).
Coordinates of a vector relative to the two coordinate systems

are related by the equations ([4], page 109)

— T ~ , -]
Fl Fl
'_[a‘ ] /\v“l ]'/ (l ?)
2 2 o
F ¥/
- 3_4 L. 3 -

where the primed components relate to the rotating system and ~  is

the matrix with elements
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all =cos Bcos ) -cos isin sin B
alz =cos BsinQ +cos 1 cos  sin B
‘13 =8in P sin i
a21 = «-8in B cos Q - cos 1 sin Q cos B
azz = ~8in P sin Q + cos 1 cos Q cos B
a23 =cos B sin i
a31 = s8in 1 sin Q
a32 = =« 8in i cos Q
a = cos 1

33

Since A is a rotation matrix, it has an inverse, A'l, equal to its
transpose.
If the earth is assumed axisymmetric, the potential has the

femiliar expansion in Legendre polynomials [1]
[ ]
~nel
1§] =q¢§z Bngn(z/r)r (BO=1,Bl=O)
n=0

with (x,y,2z) the coordinates of & point referred to the inertial

system. From the general equations (1.2), we have

Z = x/ + ‘' + a
a a23 ¥y

13 332’

and since at the satellite x/ = r, y/ = 2/ = O and

grad (z/r) = (a23 Q+ a335)/r

(1.3)
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the force (per unit mass) acting on the satellite is given by

F=-grad U "
= u(az3g + a33§) z B P/ (313) B2
n=2
~up Z (n+1) BB, (a,5) r72 (1.4)
n=290

In order to find the rates of change of the Euler angles, the

angular velocity of the rotating system is needed. It is given by the

vector
® = (F-R)r/E + B R/r°. (1.5)
To verify this we note that differentiating H=r1r x v gives
d d
wE=Yxy+rxgpv=rxF, (1.6)
RxZH=Rx(rxF) = (RF)r
=74t - = - = - ==

while differentiating H = HR gives

a dH d a
Rxggi=Rx aEE“HaTB) = H(R x 3¢ B) .
Therefore
in-R=(R-F)r/H
—-Tat =" \==

Now resolve ® into components in the rotating system

szl£+w2g+w3§.
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Since ([4], page 133)

So, by (1.5)

Hence, comparing components,

0.)1= (B.E)r/ﬁ
(1.7)
(.Dz= 0]
To find w3, we note that
d dr dr
v = ag(rg) =F P+ r(® x P) = TR+T g Q. (1.8)

Hence the angular momentum vector may be expressed
2
E=rxy=rolxQ,

and the angular momentum in the orbital plane (the plane of P and g)

is simply

wy = H/r2 .
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In order to use the formulas from [4] which give the
relationship of the angular velocity and the Eulerian angles , we
note that Q corresponds to §,B tow, and 1 to 6 . We have ([4],

pages 107 and 134).

ml=g—2sinisin6+g—icosﬁ

O=%%sinicosﬁ-%%sinﬂ

a)3=g—2cosi+ g%
Therefore

di

a—€=ml cos B

g%=a)l sin B / sin 1

%%=a)3-a)lsinﬁcoti.

A new independent variable w is defined by

dw

2 2
T = = BH/r” = p/(r"cos 1)

3

where p = H.k = H cos i, the component of angular momentum along
the polar axis.
By definition, %1—’ is the angular rate of change of the

position vector in the orbital plane, hence
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ai = (rzai/p) cos i cos B
aw
g% = (rzml/p) cot 1 sin B (1.9)
2 -1- (" /p) cos 1 cot 1 sin B

The polar angular momentum is one of the two constants of the
motion. To verify this, differentiate the definition p = H-k and
apply (1.6). There results

dp
at

&k

ck=(zxF) .k

As a consequence of the assumed symmetry, the force F = - grad U lies
in the plane of r and k. The product r x F is accordingly
perpendicular to k and

dp _dp _
il 0 (1.10)

Further, it follows by differentiating p = H cos i and utilizing

(1.9) that

%% = (r%gl/p) sin 1 cos B (1.11)

== o

Now let us introduce as one of our two principal independent

variables u = 1/r. Then




8619-6004 ~TU-000

Page 1h

dvw 2

a-%-—Hu

dr _ _ Hdu

it dw

2 2

2

9;% = - quz Q;% -Hu g% g% .

dt dw

Derivation of a differential equation in u begins by differentiating

the relationship

rvs=r dr
- - dt
to obtain
- dr.2 d'r
Vv + r. — = ()
—-_-— at at dtz

Equation (1.8) provides another expression involving v-v:

V.V = (EZ)Z + rl (QE 2
- - ‘at dat
and combining these two yields
A
- dt dtz dt

With the introduction of u and w through (1.12), the equation becomes

2 dv
2 d™n 1l 4H Adu -
Hu(z+e+g & - "I &

dw

Replacing the acceleration by the force and making use of (1.11),

we finally have the desired result.

2
du 2 . du cos i
;;5 +u=-(r wi/p) sin 1 cos B == - D )" B-F

(1.12)

(1.13)

(1.14)
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‘ For future reference, we note that the energy (per unit mass) is
E = %’-x.y_ +U
|
F or, by virtue of (1.12) end (1.13)
E = % G [(%)2 + u2] +U (1.15)

By differentiating the first of these with respect to time, it is
easy to verify that the energy is, indeed, a second constant of the motion.
Next let us introduce the second of our two independent varisbles,

the sine of the geocentric latitude of the satellite

v=sin1isinp (1.16)

Differentiating and substituting from (1.9) gives

dv
i sin 1 cos B
2
o 4y iv-= (r2q> /p) cos 24
2 1
dw

According to (1.7) the quantity in parenthesis is related to the

force as follows

(rzo)l/p) = (B.E)r3 cos :I./p2 = u(cos :L/p)2 ZBnPr’l(v)unml (1.17)
=2

so after collecting results and making use of expansion {1.4), we

have the following system of differential equations
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+
o
]

- (P /o) WY Ly (cos i/p)ZZ(n+l) BP (v) o
n=0

+
<
"

(rzwi/p) cos 2 1
(1.18)

T (rzwi/p) veot 1 cse i

with (rzwl/p) expressed by the series above and the trigonometric

2 . 2 dv,z
1 =v +(a§

functions related to the independent variable v by sin
This sixth order system of differential equations in u, v, Q, and p
is equivalent to the vector equation of motion (1.1).

In most of the subsequent analysis, harmonics beyond the second

will be neglected. In this case, we have

- 2\ uv cos2 i

(rzwi/p)

- 2\ uv (1-v~2 - v’z) (1.19)

and, omitting the trivial equation p’/ = O, the system simplifies to

w’’ +u = (l-v-v’z)[A+2%uu’vv’+ %u2(1-3vz)]
(1.20)
v/’ +v=-2Nv (l-vz-v’z)2

'Y -2 %uvz(l-vzwv’z)3/2/(v2+v’2)

where A = u/pz, N=- 3ABZ/2, and primes indicate differentiation

with respect to w. Similarly, the expression for the energy (1.15)
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reduces to

2 2
E = % u_+ ;’ 5 - Au - L u3(l~3V2)
2(1-v"=v’“) 3

Note that @ does not appear on the right hand side of any equation.
We may, therefore, set aside the third, solve the first two simul-
taneously by the Diliberto expansion procedure, and then obtain Q
by quadratures. In the sections which follow, details of this

development will be discussed.

~~~

=

N

N’
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2.  COCRDINATE SYSTEMS

Effective application of the theory of periodic surfaces
depends upon choosing & coordinate system in the phase space so
that the periodic surfaces have simple representations. (In
this connection, see Section 10). Two such coordinate systems,
one suitable when the eccentricity is not too small and a second
vhich is free from this restriction, are developed in the present
section.

We have from (1.20) the equations

v’ + v = Xa(v,v/ uv
(2.1)
u’’ +u = g‘/vz + v/? )+ A uu’Gl(v,v’) + A uZGz(v,v’),
together with the energy integral (1.21)
2 2 2 2
w4 (u-g)’ = g° + 2Bg/u + (2M/30)u3(2 - 3VP) . (2.2)

Here

g(sin 1) = A cos® 1 = u/H2

G(v,v’) = - 2(1-v—v’2)2
Gl(v,v') =2 vv’(l-vz-v’z)
6, (v,v) = (1-3v0) (1-v2-v/?)
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If A = O, then (vz + v'2)1/2(= sin 1 ) is a constant of the
motion which is simply related to the magnitude of the angular momentum
vector, that is

(1- ¥ - v’z)H2 = pz.

Our basic assumption is that there exists an analytic integral

(v,v/,u,u’,\) = constant (2.3)
such that

#(v,v/,u,u’,0) = (v2 + v’a)l/2 .

Such an integral is necessarily independent of the energy integral.
Although a mathematical proof of the existence of the angular
momentum integral has yet to be given, there are sound reasons
for using 1t as a basis of an expansion procedure. Among these
is the role of this integral in the Hansen general perturbation
scheme which was used so successfully in the Vanguard program.
It can be shown (unpublished result of W. T. Kyner) that the
convergence of Hansen's method implies the existence of the integral
(2.3).

The pair of integrals, the known energ)y integral and the con-
Jectured angular momentum integral, define surfaces in the four
dimensional phase space of the variables v,v/,u,u’ whose inter-

section is homeomorphic to a torus. This torus-like surface, as are
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the Integrals, is generated by solutions to the differential equations
(2.1). It is central to our study, giving us both informaticn about
the geometry of the phase space and a framework for our approximation
scheme.,

If N is equal to zero, the surface is in fact a torus which is

most easily represented in polar coordinates

r, sin el,

<
]
[+
|

= g(rl) +r, sin @,
(2.4)

r, cos © u/ =r_ cos 6,_.

/
v 1 1’ 2 2

i
fl

The equation of the torus is simply

where the constants p, are

J

Py sin io’ the angular momentum integral,

1/2
, {%2(r1) + ZEg(rl)/E] , the energy integral.

Using this coordinate system with non-zero A, the intersection

of the two independent integrals can be described as a periodic two

surface.
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DEFINITION: A periodic two surface of equation (2.1) is the graph of

8 peir of analytic functions

Ty = sj(el,ez,?\) (2.5)

defined for all O and for some neighborhood of A = 0, with

l)ez)
period 2x in 6,, and such that if

p.j = Sj(kl)kz’ )\)’
then the solution functions rJ(w), ed(w) taking on the initisl values
rj(wo) = pj, aj(wo) = kj’

satisfy

y rj(w) = Sj(el(w))ez(w)y)‘)

for = o <w < + o,

The remainder of this section consists of a discussion of the
two coordinate systems which were used and a derivation of the
"normal forms" of the differential equations. At a first reading
to get the essentials of the method of periodic surfaces, it may
be well to skip directly to the treatment of the expansion proce-
dure in the next section.

The coordinste system which has been introduced enables us to

define the periodic two surface in terms of classical wvariables.
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For example,

r; = sin i, the sine of the inclination of the orbit plane,

©
[

= B, the argument of the latitude,

o, + n/2 = the true anomaly

rz/g = e, the instantaneous eccentricity.

We can therefore see that ry = O implies that the satellite is in the

equatorial plane, and r_, = O implies that the instantaneous eccentricity

2

is zero.

Angular variables are used extensively in orbit problems, but
they can introduce analytic difficulties, e.g. the failure of some
general perturbations methods when the eccentricity is small. This
is due to the fact that the Jacobian of the transformation (2.4) is
equal to the.product TiTh- Clearly, the circumstances under which
either factor vanishes requires study.

Let us first consider the vanishing of r If only even

1
harmonics are present in the potential function (1.3), then orbits

in the equatorial plane are possible, i.e. ry £ O defines a class

of orbits at zero inclination. Furthermore, since r. = O implies

1
that both the velocity and acceleration vectors are parallel to the

equatorial plane, r. cannot vanish at isolated times. If it is ever

1
zero, then it is identically zero. The differential equations (2.1)

become

2
uw’’/ +u=A+ANu, v

L
o

(2.6)
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It is easy to see that this equation has periodic solutions which
can be represented as elliptic functions. We therefore have the

desirsble situation that r = O implies r, = O, and the remaining

1
equation has periodic solutions for a wide class of initial cond-
itions.

It is worth noting that the circular orbit in the equatorial

plane defined by r, = 0, u = A + A u2 has constant but non-zero

1
instantaneous eccentricity. Furthermore, other periodic solutions
do not in general correspond to closed paths, since the period of
the solution need not be commensurable with 2x.

Not let us consider ry, = 0, that is, an orbit with zero

eccentricity. Since r, = 0 implies that u = g(rl), u/ =0, it
follows from (2.1) that this can only happen at isolated times.
At such a time, 62 is not well defined. It is not surprising that
many approximation schemes using classical angular variables give
poor results for orbits with small eccentricity.

In order to introduce a coordinate system having the property
that r2 = 0 implies T,

equation has periodic solutions, we let

= 0, and that the remaining differential

N
]

r, sin 6, ,

o»
k 7
T R
k=1

-]
k
= / - ’
zZ, = u 2{: A a2k(v,v ) Z, = T, COS O,
k=1

(2.7)
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where the ajk are to be determined so that the new polar coordinates

have the desired property. In other words, if

4z, K

— = 7/

= z, +-§:k Zlk(v,v ,zl,zz)

k=1

oo

dz

2 k ,

™ zl'+§:x Zox(VsV221525),

k=1

then the ajk should he selected so that

zjk(v,v’,0,0) =0 .

Furthermore, the remaining equation

-]

\ -k
v/’ + v = AG(v,v)v [zl +g +Z)\ alk(v,v’):!

k=1

should have periodic solutions for arbitrary initial inclination.

The determination of such a transformation is egquivalent to
finding periodic solutions of the differential equations (2.1)
having ﬁhe property that as A tends to zero, these solutions
become the circular orbits at the prescribed inclinations. The
mathematical validity of this procedure has not yet been established,
except in the speclal case of equatorial orbits. However the first

and second order ajk terms have been calculated, and to that order,

(2.8)

(2.9)

(2.10)
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(2.9) is satisfied. The corresponding approximate solutions to
(2.10) have been obtained as periodic functions of w.
The convergence of the transformation (2.7) would imply that

= 0 only if r, = O and that (2.10) has periodic solutions for

To 2

arbitrary initial inclination. The second statement follows from

the observation that if r, = O, the energy integral (2.2) determines

2
simple closed curves in the v,v’/ plane which correspond to periodic
solutions of the differential equation (2.10).

In order to calculate the &, , it is convenient to replace

3k
v and v/ by the polar coordinates T, 91 where, as before, v = Ty sin 61,
v/ = r, cos 61. Recalling that r = sin i, el = B, we have from (1.20),
de
1 . 2 \2 . 2
F-=1+2Au (1 - rl) sin” @,
(2.11)
dr
1 2,2
T =-Mu 1 - rl) r, sin 26,

where, using (2.7),

o0
k
u =z, + g(rl)-+ }:% ?lk (rl,el)
k=1

If we now differentiate the expansions (2.7) of z, and z

1 2

and replace dzu/dwz, drl/dw, del/dw by their equivalent expressions

from the differential equations (2.1) and (2.11) we obtain equations
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(2.8), wnere
X

11 2.2 2 2

2, = - 551— + 0y - ZA(l-rl) ry [z1 + A(l-rl)] sin 2 9,
o
242 2 0y 1, 2
2y, = (1-rl) [z1 + A(l-rl)] ( 5;;— r, sin2 6, - 2 55;' sin Ql)
X,
12 2,2 2
- 56;' + 0y, - 20404 A(l-rl) r; sin 2 6
- (2.12)
Zo. = - etk - + (1-r2) [z +A(l-r2)][z 2 sin 20
21 A | 1/ 1% 171120 1
2 . 2 2
+ (1-3rl sin 91)[zl + A(l-rl)]]
o, o,

2,2 2 21 21 ., 2
2,0 = (1-rl) [zl + A(l-rl)]<5? ry sin 26, - 2 W sin 01)

X,

22 2 2 2
- S-QT- -, + (l-rl) r] sin 2 61 [z2 o, + [zl + A(l_rl)]%l

+ 20 (1-3{ sin® 61)(1-ri)[zl + A(l-ri)]

The requirement that z, = = O be a solution means that (2.9)

1
must be satisfied, that is

)
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oo’

11 2,, _2y3 2 _
3§I— - o, +24(1 rl) r) sin 26, = 0

3( ®n Xy o
A(].=r ) r—rl sin 26, -erin 91)

el

+a,,- 20 . A(l- rz)zrz sin 26, = 0
5"" 22”7 ‘11 1

2
Tt oy - A3 el o)) <0

2\3 [ o, \ o
A(1-r7) 21 21 2 22
1 < ) lsinze-za——sin 91)-$-a12

242 2
+A(l-r)[21 r, sin 26, +2all(l3r sin® 9)]—0

The first and third inhomogeneous differential equations determine

Q.. and & , s periodic functions of 6, with r. appearing as a

11 2 1 1
parameter. We have
2

_ 2,1 23, 3 5
all(rl,el) T, sin 8) + v, cos 8, + A (l-rl) (1- 5T tgT

2
1l

_ 1 2 3 2
cz21(rl,91) Ty c0s 8 - v, sin 8, + 3 3 A(1-r ) r] sin 2 @)

(2.13)

cos 2 91)

(2.1k)
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vhere Ty and T, are determined so that the equations for a12 and

oo have periodic solutions. It is easy to verify that Yy =Yy = 0.

The solutions to the other two are

2 4 2 2
alz(rl,el) = A3(l-rl)5[(2- %é ri + %1 rl) + % rl(hh-6lrl) cos 2 8
+ % ri cos 4 Ol] (2.15)
2
Qéz(rz,ez) = - % A3(1-r1)5ri[2(2-ri) sin 2 6, - 3 ri sin b4 Ql]

where, once again, the coefficients of sin el and cos el have been
set equal to zero.

We now have

wz, o+ g(rl) +.%ail(rl,el) + kzaiz(rl,el)

du . 2
%t %a21(r1,61) + N azz(rl,el)
(2.16)
v =r, sin el
av
W™ - cos 91 .
Before proceeding with the expansion procedure, let us inspect
the special case of the equatorial orbit. If the inclination is
zZero, we have
u = 2z, + A+ XAZ + 2223 ’
| (2.17)
du . av
a; = ZZ’ vV = 0, a; =0.
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The radius of the circular orbit in the equatorial plane is
determined by the quadratic equation obtained from (2.6) by

¥*
setting d°u/aw’ = 0. If its radius is denoted by 1/A*, then

=A+7\A2+2?\2A3+-

AN = 22 (;'“)1/2

We now check that the transformation

* du
u =12y +A (7)), v = %o
gives us
dz dz
1 2 * *.2
a-‘T-—Zz, aT——Zl+(A-A)+)\(Zl+A) .
By construction, these equations have z, = z_ = O as a solution.

1 2
In other words, the expansion (2.7), when specialized to the case

of zero inclination, converges and, furthermore, the periodic
solution described by the vanishing of 2y and z5 is the circular
orbit in the equatorial plane. This orbit obviously has the
property of remaining circular as A tends to zero.

Two moving coordinate systems have now been introduced. The

first, which uses classical variables, (see page 21) is given by

dv
v=r sin 91, Iw = Ty cos el,
u=r, sin 8, +g(r,) du -y cos @, .
2 2 17?7 4w 2 2

(2.18)

(2.19)

(2.20)

(2.21)
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The second; even though complicated, is suitable for nearly circular

orbits. It is given by

dv

v =s, sin ¢1, 3 = 5 s 4.,
o
: \ "k
u = s, sin ¢2 + g(sl) +Z7x alk(sl,¢1), (2.22)
=1

du k
&g cos g, + Zx o, (s,,8,)

(to avoid confusion, we will use s,f as polar variables in the second

set).
Relative to the first set of polar variables, the differential

equations (2.1) become

1 2,2 2
=1+ ZKu(l-rl) sin” 8,
dr

1 242
Tt Aurl(l—rl) sin 261

(2.23)

dez
T =1 - M(F, cos 8, +F, sin 8,)/r,
dr
—Z2 =\(F, sin 6, - F, cos 6,)

where, for brevity,

2
u = A(l-rl) + 1, 5in @,

B

2 2,2
2Arl(1-rl) sin 26,

F2

2yr.2 2 2
(l-rl)[r1 sin 28, cos 8, + (l-3rl sin Bl)u)

Ta
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The presence of r, in the denominator of the 92 equation serves
as an explicit warning that low eccentricity orbits require
special care.

In the modified variables, we have

g
1 2.2 2
=1+ Zku(l-sl) sin ¢l
ds
1 2.\2
el %usl(l-sl) sin 2¢l
d¢2 L o ) (2.24)
Fo=1l+3 Z)\ (Zlk cos ¢2 - Z,, sin ¢2)
2
k=1
ds =
2 1l Lk
d—w_ = Ez z N (Zlk sin ¢2 + ZZK coSs ¢2)
k=1
where we leave
(-]
u=s, sin @, + A(l-sz) + NS (s,,8.)
2 2 1 Dx\510%
k=1

Clearly 5, = 0 is no longer a cause of concern since the change of
variable has been made in such a way that every Z, (s,,s, 9.,8.)

. Jkt1’T2,7"1272
is divisible by Sne

Both sets of equations are in what will be called normal form.

They can be studied with the aid of the Diliberto expansion procedure
outlined in the introduction and described more fully in the next two

sections.
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3. THE PERIODIC INTEGRAL
In this section we present an expansion technique for

determining an analytic integral

#(el’ez)rl)rz,x) = constant, (3'1)

which has the property that it specializes to the angular momentum
integral if the oblateness parameter is set equal to zero. The

requirement that # be doubly periodic with period 2x in ©. and 62

1
arises from the change from cartesian to polar coordinates.
The first set of polar coordinates and equations (2.23) will be

used in this section since they are somewhat simpler than the second

set (2.24). We write

ae
—d =
=1+ G%(el,ez,rl,rz)

(3.2)

dr

E‘l = )\Rj(el’GZ’rl’rZ)’ J=1,2

where the functions @% and Rj are given in (2.23).
We seek an integral having an expansion
]
n
= rl-+}: A Hn(el,ez,rl,rz) (3.3)

n=1
If we differentiate (3.1),with respect to W ,use the expansion

(3.3) and the differential equations (3.2), we obtain the following
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infinite set of partial differential equations:

anl . anl .
%t " - By

1 2
oH OH

"+ e =PH nz2
551 552 n-1’ s

where o
R ): 3H
FH- 'Z[_%W*Ra TN
o 3 J

If these equations have periodic solutions, then the
sequence of functions [Hn] can be used to define a formal
analytic expansion of the integral # . At this time, no
information is available concerning the convergence of the
series. As will be shown, an infinite set of conditions must
be satisfied so that the functions {Hn] will be periodic. These
conditions restrict the class of coordinate systems which can be

used if a normalized integral (i.e., ™ = r. if A = 0) is to exist.

1
For the coordinate systems used in this report it can be shown
(unpublished theorem of S. P. Diliberto and W. R. Haseltine)
that these conditions are satisfied.

The following elementary theorem is needed for the study

of the equations (3.h4).

(3.1)
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THEOREM: A necessary and sufficient condition that there exist a

doubly periodic solution of the differential equation

of of
is that the doubly periodic function g satisfy the equation
2n
1
Mg = E;h/\ (el + 1,0, + t) dt = 0 .
0
If this condition is satisfied, the general periodic solution

is given by

f=0qg+ h(ez-el)

where h is an arbitrary differenpiable periodic function and the

operator § is defined by

an
Qe = =~ [tg(e, +t,0, +t) at
on 1 2 ’
0
It can be verified that MRl = 0; therefore we can write
Hy = - QR + h1(¢), Y= 8, - 8.

The periodic function hl

We therefore require that

MP(-QR, + h;) = O.

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

is to be selected so that H2 can be calculated.

(3.10)
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Using the definition of the operator P and the fact that a

function of w is unaffected by the operator M, we get

dhy
Iy = " MR/, (3.11)
where
A=M8, - 0)) = 21r2)P(5 :F - W) (3.12)

Since A does not vanish except for orbits at the critical inclina-
tion, cos® 1 = 1/5, we can satisfy condition (3.10). As stated in
the introduction we have not yet made a study of this exception.
The satisfaction of (3.11) is not sufficient for the computability
of the function Hz, for we must know that hl(W) 1s periodic. The

equation (3.11) will define a periodic function if and only if

an
e, ap - o. (3.13)
0

If this condition is satisfied, we can compute Hz. The subsequent

steps follow the same pattern. At each step we take

B, =@H _,+h () (3.14)
with

dhn

Iy =@ E /A, (3.15)
together with the periodicity condition

2n
fMPQP H 4y =o. (3.16)
0
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The infinite set of conditions (3.16) place a restriction on the
coordinate system and, ultimately, on the differential equations
being studied. As stated, it can be shown that they are
satisfied here, and therefore the sequence of doubly periodic
function [Hn} exists.

Even in the absence of information about the convergence
of the series (3.3), the formulas can be used to define torus-
like surfaces, which would approximate the conjectured periodic
surface. A statement about the degree of the approximation
requires, at the very least, knowledge that (3.3) is an asymptotic
series.

If we set N

py =71 + Z%“Hn (3.17)
n=1

and write the known energy integral as

r2 = g2(r,) + 28g(r))/u + (2M/30)e(r,)(1-3 v} sin” 6,)(x, sin 8, + g)°
(3.18)

then these two equations can be solved by iteration to give

)\N+1)

N
Ty =Py +Z7\ns3n(el,ez) + 0O j=1,2. (3.19)

n=1
In this way, we have obtained the equations of our approximating

surfaces.
It should be noted that because the functions appearing in
the differential equations (2.23) have finite Fourier series in

6, and ©

1 09 this will be true of the functions Hn’ hn and S

Jn
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The ecguations (3.19) define a surface which we hope to be
close to & surface to which the solutions are constrained. They
can be used together with the differential equations for Gl and 62

to approximate the motion on the surface. This is the subject of

the next section.




8619-6004-TU-000
Page 38

L, APPROXIMATIONS ON THE SURFACE
We will now consider the problem of approximating the solution
of a differential equation defined on a torus-like surface. This

equation is obtained by taking the 6, equations of (3.2) and

J
substituting the periodic surface approximations (3.19). We have

de
d_Tri =1+ ®3(91’ez’r1(91’92’}‘)’"2(91’92’7‘»’ J =1,2.

These equations define a flow on the surface. Since w does not

appear explicitly, we can take either ©., or 92 as a new independent

1

variable. For example, if 62 is chosen, then

ae, _ 1+ A@l
d62 1+ %@2

1+ x@(el, e.,\).

2’

n
1 +Z A r‘n(el,ez)
n=1

The solution to this equation is an integral curve on the surface.
The position of the satellite cannot be found until 62 as a function
of t is known. The first order solution of the problem of finding
this angle-time relationship is given in section 6.

It should be noted that although we are using the notation of
one of the two coordinates systems employed in this report, the

formalism of this section applies to both.

(4.1)

(4.2)
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It is a classical result that the average slope, or more
precisely, the rotation number, of a solution to a differential
equation such as (4.2) exists and is independent of the initial
conditions. Therefore a continuous function c(A\) which vanishes
at A = 0 is defined by

lim ©,/6, =1 +c(N) (b.3)

L JRY

2

It is not always true that c(A) is analytic. However it will
be shown in this section that if @ is an analytic function of the
three variables 9,,0, and ), and if M® # 0, then ¢(A) has a formal

power series expsnsion. Furthermore, a change of variables can be

made
a; = 6, + NB(8,,6,,\)
= (4.h)
q.z = 92’
s0 that
dq. d
1 n
a—(-l-z——l+c(7\) =1 + Z)\ e - (4.5)
n=1
The doubly periodic function B(el,ez,x) will be given by a formal
pover series in A.
Clearly
91 = ql - A B(ql’qZ’o)
8, = 4, (4.6)

0 ,
q + 1+ 'Acl)q,a

0
"
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is a formal first order solution of (L.2)

The formal series expansion of B is written

o9

n
AB(0,,0,,M) = Z)‘ [8(6,8,) +b_()] (%.7)
n=1
where MB = O, ¢ = 8, - 8;, b has period 2= in ¢, end bn(O) =

This last condition is an arbitrary determination of a constant
of integration; another choice would give a transformation of
the same type.

To determine the functions Bn and bn’ ve differentiate
equation (4.4),and substitute from (4.2), (4.5) and (4.7).
After equating coefficients of powers of A, we obtain an infinite

set of equations

3B, OB
1 + 1. c, =T
591 592 Tl 1
OB OB db 2B
n n n-1 n-1
% "%, "% T Tay T iw (1-8)

n-2
n-k
n-k[:dq/ -—5- nz2a.

As before, the right side of these equations must have zero mean.
The periodic functions bn(¢) and the constants cy will be selected

inductively so that this condition is satisfied.
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From the first equation, we see that c. = M I“l (a constant for

1

both coordinate systems). We now use an inductive argument. Since

b, is'a function of () only, M E’\l dbn/dlﬂ = ¢, dbn/d(p . Therefore

e dbn'l—c -M{T_ +T Pn-y
1 d¢ n 1361

(4.9)
n-2
n-k
k=1
This equation contains cn as a parameter., It is selected by the
requirement that b -1 have period 2=n in . Hence
n-2
M r_ +T n'l ~1 ay (k.10)
1 9 n-k dw 5
k=1

Having determined c and bn-l’ the doubly periodic function Bn is
found by applying the Q operator to the right side of equation (L4.8).

For example,

=2)
1]

QM r, - 1“1]

191 = ¥ f |:I‘ + Ty ay (4.11)
z—f[rn* ay

o
o’
i}

0
1
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5. FORMULAS AND NUMERICAL RESULTS-FIRST METHOD

A FORTRAN program, based on the expansion developed in
preceeding sections, has been written to calculate the position and
velocity components of a satellite. Formulas used are collected
here beginning, after a few more preliminaries, in 5.kL.

5.1 Notation differs somewhat from that of previous

sections. We have
91 = B, T, =P 92 =0

and the inclination i (rather than sin i) corresponds to rys
reflecting the fact that progremming began before the merits of the
present choice were appreciated. With these changes, the system

(2.23) becomes

B’ =1+ 2 M\ cosh i sin2 B

¢/ =1 - 7\u(F1 cos o + F, sin a)/p

-« M sin i cos3 1 sin 2B

[
~
]

cos a)

’ = . -
o 7\u(Fl sin ¢ - F,

where, in the interest of brevity,

u=psino+ A cos2 i

o]
\

2A sinz i cosh i sin 28

2

cos® 1 [p sinZ i sin 2B cos o + (1-3 sin“ 1 sin® Blul

=
il
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If, in accordance with Section L4, we adopt o as independent variable s

there results

di

T = My
dp _
do"mz

as _

I = 1+20

where, to order zero in A - as is appropriate if the system is to

be solved to first order only,

o cos® 1 [2 sin (Y+8) - sin (Y+38) - sin(¥-p)]

[\V]
o) 3] o

+ A cos i (1l-cos 2B)

- %A cos)+ 1 sin® i [cos(2(}’+hﬁ) + 1 - cos(2f+2B)- cos 28]

cos6 1 sin® il7 sin(3B+(P) + sin(B-@) - 6 sin(y+8)]

'>
ol ™

!
I
1 2 2

- yg o cos” i sin” 1 [sin(3¢4B) + T sin (B-Y)

+ 5 sin(5g+3() - 11 sin(P+3B)

+ 18 sin((p+ﬁ) -6 sin(3ﬂ)+35)]

+ 111 o cos? 1[3 sin(y+8) - sin(3(+38)]

L A2 6 |
+ A cos 1[l-cos(2f+2B)] + o cos~ 1 sin(y +8)
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| ' R = - % o cos> 1 sin i[cos(B-y) - cos(3B+y)]
- Acos’ 1 sin 1 sin 28

R, = % pA cosh 1 sin® i(sin 2B-3 sin(bB+2¢) + 3 sin(2p+2¢)]

- %;—Az cos6 1 sin® i[cos(B-W) - T cos(3B+Y) + 6 cos(P+8)]

+ %6 p2 cos® 1 sin® i[5 cos(B-(P) + cos(3B+l{))
- 5 cos(58+3Y) - cos(3}+B) - 6 cos(ysB) + 6 cos(3+3p)]
+ A% cos6 1 cos(y+B)

+pA cosu i sin(ZB+2W)

2

+ % p cos® ifcosp+8) - cos(3q/+3B)]

Here, as elsewhere,(/ = 62 - el = 0 - B. To make it easier to
apply the operators M and Q which were defined in Section 3, we
have first reduced the functions Rl’ R2 , and O to a form free from
products of trigonometric functions of o and P and have then
eliminated o.

5.2 A formula for longitude of the node is needed, but
this presents no difficulties. From (1.20), after introduction of

our present variables, follows

R/ =<2 N cos3 i s:!.n2 B

-2Mpsin o+ A cos® i) cos3 1 sin® B
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Since, from the equations of the preceeding paragraph it is evident

that
g/ =1 + O(7)
1=1 + o()
p = p, + O(2)
B=B,+0-0,+ 0(A)

with subscript zero denoting values at the initial time, we have

to first order in A

5

a _ 3 2 2(4-
T = 2\ cos 1o[p° sin ¢ + A cos io] sin®(o oo+a°)

This differential equation can be Integrated without difficulty to
yield the result found below in 5.12.
5.3 With the new variables, the energy integral (2.2)

becomes

p2 = cos2 i[A2 cos2 C (L 2

i+2Ep “ + 2%u3\§ - sin® 1 sinaﬁ)]

In order better to separate terms of different order, cosz i is split.

cos? 1 = cos® i+ (cosz 1 - cos® io)

2
cos” 1 - sin (1+10) sin (1-10)

Introducing a constant

E = 2Ep'2 + A% cos? 1,
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the energy integral becomes

pz = cos® i(B - sin(i+io) sin (i-io) + zxu3(% - sin® 1 sin® 8)]

E may also be evaluated using the energy integral at initial time,

from which
2

(=5[]
]

O . 2a3(3 - sin® 1 sin? B )
2 0'3 (o} o
cos i

o]

5.4 The calculations that are performed will now be outlined.
Since the angle-time relationship (Section 6) is not included in the
present program, it is necessary at each step to compute o using
position and velocity components obtained by some other method,
which also provides a standard of comparison for the results.

The formulas may be compared with those in [3], in which a
different set of coordinates was used.

It will be noted that the new choice of variables greatly
simplifies the formulas. Input values are the constants R (the
mean radius of the earth), p, and J = - 3B2/2R2 together with the
initial time to, and the initial position and velocity components
Xo, Yo, Zo’ Xo’ Yb, Zo' The program first computes additional

constants of the orbit.

2
p=X ¥ -X Y , A=u/p", A=

2

5.5 From initial components (and later from components

computed by the comparison method) the program evaluates various




variables as follows

NGNS N V= %P
u=1/r
rxy
W—( ,W,W)-
¥z lrxv|
sin 1 = wi + W 3 cos 1 = WZ ; 1
. 2
psin og=u-Acos 1
. v
p cos 1 = —~
pcos 0=ul= -~ —"—x
P T
o= J(p sin c)z + (p cos 0)2
c=arctanp—s-1-9-—°
p cos O
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= arctan(sin i/cos i)

5.5 In turn, longitude of node, right ascension and

declination, and argument of latitude are found,

Wx Wy
sin Q = sin 1 ; COS ) = - sin 1 3 Q = ar
* * *
sin ¢ =-=%==§r; cos @ P SE, ¢ =
\X“+y s

l 2 .2
* *
sin 8 = z—%z— ; cos ©

g Ful

cos B =
cos 9*
sin B = EEE_E_- 3 B = arctan

*
; © = arctan

sin B
cos B

ctan(sin Q/cos Q)

sin
arctan
cos

sin ©
cos ©

* * *
sin 8 [cos § cos @ + sin @ sin ]
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find the remaining osculating

elements.,
r vz r
e cos E = m -1; a-= 16 cos ®
r. vV
esinE=— ; e = \I(e cos E)2 + (e sin E)2
lga
cos f = 2 (e Cos E _ ;>
r e
stn £ = 2 \[1 - ¢ (———e 2l E)
f = arctan sin {
cos ¥
Apogee height = a(l+e) - R
Perigee height = a(l-e) - R

5.6

Other fundamental quantities computed from initial

conditions are the constant introduced in Section U4

4
(o] =

1
1 -EACOS

2 .
i (1-5 cos 10)

the constant in the expansion of the energy integral

2

=
I

cos 1
o}

the energy itself

2

o) 3
—2- - 27\\10
Y

2
E = >

o)
o - 311 2
> -2 Auo (§ - COS 60>

(l - cos2 6) - 2Au
3 o o)
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and the period

5.7 The function B, of Section L4 is, in the present case,

given by

B,(1,0,8,0) = @B, - @B, - o8 + B,

where

QM@l A cos6 i

Y

QM@2 Acost i (1 - 3 cos® i)

"
rof

Q@l = p cos)+ i [— cos o + % cos (o+2B) - % cos (o‘-ZB‘ﬂ

+Acos6iE1--:2L-sin2a

Q@ A cos)4 1 sin® i [:- g sin (20+2B8) - % T

1]
1

+13Isin20+%sin 26]
2
%—- cos6 i sin® 4 l:— -37_-5 cos (o+2B) - %;— cos (2B8-0)

3 I
+ 5 cos g
2

0 cos® 1 sin i (:% cos (30-28) + 1—6 cos (2B-0)

+ §g cos (3042) - g cos (0+28)

+§cosc-§cos 30:]

(formula continued next page)
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-pcoszi[-%coso+—i§cos 3ﬂ

-A cosu iEt - % sin ZE]

2
+£‘—cos 1 cos o

The associated function b1 is slightly less complicated

sin (20-28)
2A cosm 1(1-5 cos? i)

bl(i,p,B,o) = K

where

2

K = A% cosd i':sinz 1 (%3; sin® 1 - %3) + cos® 1 (- -52- sin® 1 + zzl

+ p2 cosu i l:sin2 i (g%— sin® 1 - -g%) + cos® 1 (-2 sin® i + %) + coshi:]
L

+ A—a cost? i[sin2 i( - % sin® 1 + %)‘J
o

5.8 As usual, computation reverses the order of analysis,

so the functions Hl and h, of Section 3 are next to be evaluated.

Hl = Hl(i:D:B;U) = - QR]. + hl
where
1 3 1
R, =3 pcos” isini|sin (0-28) + 3 sin (o+28)
+-:2L—A cos5 i sin 1 cos 28

2 2 2
b = 2 sin 221 [co; i. Sig o, 1_2] \:cos (20-28) + 1]
2A(1-5c0s“1)
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Initially, the constant
pl = ?\Hl(io’po’ao’co) + iO

is also calculated.
5.9 After computing all the above quantities for the

initial time t_, the program is given Xg,Yg,Zg,Xg,Yg,Zg (output

from the comparison method) at some later time t. Using this
input in the formulas of 5.5 and 5.6, the program computes
r,v,u,i,a,¢*,9*,6,c,p,f, and aspogee and perigee heights. In
addition, the revolution mumber N is taken as the integral part
of (t-to)/P

5.10 Using the value of o just found, together with the
various initial values, the program computes f by an iterative

procedure. To start, we set

By =B, + (o-oo)€l+Kcl) + %cl(ZﬁN)
Subsequently, we have

sy = Po * (c-ao)(1+%cl) + Acl(ZnN)

+ A [}1(io,po,ﬂo,00) - bl(ib’po’Bk’c)

+ Bl(io’po)ﬁoygo) - Bl(io’po’ak’oi]
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and utilize the formulas of Section 5.7. The calculations are
repeated as many times as are necessary to achieve convergence.
In general, the value of B at the end of the third iteration was
the same as that in the second. First order results, strictly
speaking, can be obtained without iteration (here or below) but
numerical results seemed improved by a few repetitions of the
cycle.

5.11 With o and B now known, another iterative proceedure

is used to find i and p.

kel

n

Pl" A Hl(ik’ pk)B) G)

2 2, Ja .2 . |,
Prep = €08 1, lh - A" sin (io+1k+l) sin L?Hl(io,po,ao,co)

. 1 2, 2
- kHl(1k+l,pk,B,o{] + 2%u£+l(§ - sin i,y sin B)J

where

2
uk+l = pk sin o0 + A cos ik+l

This calculation starts with k = O and is repeated until the values
of 1 and p converge. As a resglt of this computation u(B) is
known to first order. Note that we are here inverting the periodic
integrals to find the periodic surface; see the end of Section 3.

5.12 Thus having obtained the values at time t of i,p,B,0,and u,

the program computes the corresponding position and velocity vectors,
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as follows:

53

3 2 1
Q==-Ncos” 1 [é cos” i [:(c-ao) +2xN - 3 (sin 2B - sin zﬂéﬂé

3

cos-B
+ 2p, I:- cos(co-Bo) (COS B - 3 "
+ 3 stn (0,8)) (s1n® p - s1n3 Bo):']

+Qo

e}
]

1 [}os B cos Q - sin B cos i sin %]

c u

Y = %-[}in.s cos i cos Q + cos B sin %]

Z = L sin 1 sin B
u

)2

Or = V\]u(xc - xg)2 + (Yc - Yg)2 + (zc - zg

Q= - 2\p cos2 i u3 sin2 B8

i=- 2N\ cos® 1 sin 1 (sin B cos B) us

2
. _ _pu [: h 2 :]
B = oI 1 +2zcos 1isin™ B
I =5 (p cos o)
X = % [E(cos B sin 0 + sin B cos i cos Q) 4

-(sin B cos § + cos B cos i sin q) B

+(sin B sin i sin ) EZ]

+r [:cos B cos Q - sin B cos 1 sin é]

cos +
B0

cos

3

38

(o]

|
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l:-(sin B cos ising + cos B cos 9) @

+(cos B cos 1 cos Q - sin B sin a) B

-(sin B sin i cosq ) i]

+i'l:sinBcosicosn+cosBsin§E|

[sinicosBé+cosisinBi:l

+ T Ein i sin B]

y=32
u
232
u
& =

JG -3 )7+ (1, - )7+ (7, - 2)°

g

Finally the program computes the semi-major axis, eccentricity,

apogee height, and perigee height.

2
i e
A~ cos

SRR

Perigee height

Apogee height

3

l

1/2

-]

-1
l - s:tn2 i sj.n2 B)J

a(l-e) - R

a(l+e) - R
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Once .these results have been printed, another set of comparison
velues may be read and computations, starting from 5.9, repeated.
The numerical results are given in the table below. The
maximum Ar for each revolution is given in feet and is the square
root of the sum of the squares of the differences between the
Diliberto coordinates and those of a step by step integration run.
The Diliberto coordinates were computed at 5 minute intervals
during the first revolution and at twenty minute intervals there-
after. The comparison program utilizes the Cowell formulation with
the Gauss-Jackson integration method and has been carefully tested
to make certain that it is not, for present purposes, significantly
in error. The initial values of inclination i and eccentricity e
and the revolution number N are given. Runs were made for
e = 0.005, 0.1, 0.2 and 1 = 50, 45°,63°,85°, Tt was obvious from
values of Ar, even for the first revolution, that the Diliberto
formulas given in this paper are not applicable to orbits of

eccentricities as small as e = 0.005
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i = 45°

N e=0.1 e=0.2 e=0.1 e=0.2
1 288k 139 ™ 559
2 2953 883 960 451
3 3363 1112 1550 708
k 3605 1282 1720 882
> 3729 1390 23917 979
6 4006 1646 2504 1047
T 4088 1832 32L5 1291
8 433 1956 3288 1513
9 Lhs55 2187 4085 | 1656
10 4820 2k31 4063 1753
11 L4812 2549 k919 1955
12 5212 2672 Loké 2203
13 S0 2992 5766 2365
1k 5609 3193 5829 2467
15 5532 327k 6584 2640
16 5995 3496 6707 2909
17 5886 3793 7391 308k
18 6389 3932 7582 3178
19 6343 3957 8214 3331
20 6787 4310 8453 3623
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1 =63° i=85°
N e=0.1 e=0.2 e=0.1 e=0.2
1 41793 LLT7 5557 986
2 38647 L321 7205 962
3 34372 4630 8889 1258
L 37268 4081 10566 171k
5 35749 3615 12413 1942
6 39620 4638 13876 1954
7 370L45 4933 159h2 2203
8 36104 4389 17230 2673
9 38402 399k 19459 292k
10 35516 | 4988 20593 2939
11 39683 5246 22972 3159
12 40986 4660 23921 3641
13 41005 4356 26490 3901
14 41410 5322 27306 3930
15 42282 5545 300k4s5 4115
16 41798 Lo8l 30651 4616
17 43579 4730 33572 4890
18 k2217 564k 3399k k925
19 L4873 5853 37079 5051
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6. THE ANGLE-TIME RELATIONSHIP
The Diliberto expansion procedure has been used to determine
the position and velocity of a satellite as a function of an inplane

angle © Although these formulas are a first order approximation

2.
to the path of the satellite, the determination of position on the
path at any instant requires knowledge of the relationship
between 62 and the time, t. As in the simple case of elliptical

motion, one obtains t as & function of 6,, in effect, a generslization

2
of Kepler's equation. It is necessary to invert by some approximate
method, e.g. by iteration, in order to obtain Qz(t).

The formulas which are discussed in this section have not yet been
programmed and checked against a set of reference orbits. They were
derived using the simpler of the two coordinates systems which have
been studied, but the method can be used for the low eccentricity

system.

We have as our definition of the variable w,

— = Hu (6.1)

Therefore,
-1
dt _dt dav_ l 2 2 (6.2)
3, “aw 38, "Vt "N E“ (2 +20 z):]

The variables 61, Ty Ty which occur in the expression are known

to first order as functions of 62. We have
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T =D+ Ask(ql,qz), k =1,2,
o, =q - {Eﬁ(m) + Bl(ql,dzﬂ , (6.3)
0, =4y 4 =4 *+ (14 2e))ay, Aé =R -9 =- 7‘°1‘1.z‘ 3 -
Let us write
%%é = V(ql,qzk), (6.4)

and decompose V into the sum of a function of Aq and a function with

zero mesan, i.e.

v(ql:qu.}‘) = 2(ag,N) + L(ql:qz.ﬂ‘): (6.5)

where
Z(M:%)=MV;L=V'MV:

It will now be shown that the integral of V can be written as

% &
J g g asg =gy [T 4y + @+ atayan, (66)
o} .

vwhere the mean of the doubly periodic function G is a constant of the
integration. The formulas in this representation of the integral
of V have not been restricted to first order approximations. For
o
example, e suppose q, = q; + (1 + c(A)) q,-

To determine the function G, we differentiate (6.6) and use
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the elementary fact that
da HlapsapN) = L+ o(h) @ - (6.7)
After cancellation, we obtain
- (M) ngl:lq (1 + c(n) %+%. (6.8)

Up to this point, no aspproximation has been made. The existence and
analyticity of the function G is known since V,£, and L are analytic.
The fact that G is doubly periodic follows from & special property
of the function L, namely that it can be written as a finite
Fourier series in 9y with coefficients which are periodic functions
of q,. It follows that the integral of L(ql(qz),qe) is an almost
periodic function with fundamental periods 2n and 2x/(1 + c).
Since any such function can be written as a doubly periodic function
in g, and q,, the representation (6.6) is correct.

The explicit formula for G is found by expanding it in powers

of A and determining the coefficients from equation (6.8). Let

L =Zﬁn, ch) =) We,, G- an“lc (6.9)
n=0 n=1 n=0
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As usual, we obtain an infinite set of partial differential equations.
No special analysis i3 needed to prove that periodic solutions can
be obtained, since, by construction, the functions appearing on the

right side have zero mean. The equations are

6. %, aL At 3L
n n [o] n-kK
SEI + 3a, =" Cat SE; AT R _Saif'+ (6.10)
k=0
G
+ 2—l+k:] s nz 1.
1

In the present problem,

V(a,,8,,M) = V(a,) + MV, (q;,9,) + ON). (6.11)

Therefore 3L /da, = O, and

%, % %
v [ Vlafs agnang = [V (e agg - &= fuv,oay
° ° M (6.12)

« 7 [Vy(ay,8) - W] 2 + 00®)
6]

with t measured from a time at which 9, vanishes.
Explicit formulas for the functions appearing in this equation
have been derived in terms of the variables used in the preceeding

section. The development proceeds as follows. The function Sl is
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already available, since to the required order
Sl(ql’qZ) == Hl(ql’qZ’pl’PZ)

and there is no difficulty in obtaining S, by substituting (6.3)
in the energy integral and equating coefficients of A. The
expansion of V to get Vb and Vi is straightforward and not too
laborious; the first term in (6.11) is then readily identified
with the true anomaly-time relationship for elliptic motion. At
this point the direct approach seems to break down. While the
necessary integrations csn be carried through, terms proliferate
“until merely to set down the final expressions obtained for
VoMY,

these massive formulas are not particularly instructive, they

and Q(Vi-MVi) would teke some eleven pages here. Since

are omlitted.
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T. FORMULAS - LOW ECCENTRICITY METHOD

The FORTRAN program for the low eccentricity method is a
modification of the basic program and resembles it in many details,
so we will concentrate here on the differences between the two
programs and make frequent reference to Section 5.

7.1 The system (2.24) is fundamental. However, we set

¢1=B’ 32=p)¢2=0

and again make a change of the fourth variable so that i (not sin i)
corresponds to 8q- We will not set forth here the complicated
equations corresponding to those in 5.1, but be content to remark
that @l and the mean of @2 are as before. To be consistent with
the notation of (2.24), we probably should wf&te @i instead of GE,
but description of the low eccentricity program will be easier if
we allow our symbols to duplicate those used for corresponding -
though not necessarily identical - quantities in Section 5.

7.2 Calculations closely parallel those previously described.
Input and evaluation of initial parameters are exactly as described

in 5.4 and 5.5 except that we now have

psino=u-A cos2 i ~A ail - Az alz

2
= u’- -
pcos o =u’-A aél A a22
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where

A, = % a2 cos6 1 sin® 1 cos 2B + A? cos6 i (1-% sin® i)

a21 = % A2 sin2 i cos6 i sin 2B
@, =2 A3 cost® 1 (1- % sin® 1 + éz sinh i)

+ % A3 sin® 1 cos™® 1 [Ehh-Gl sin® i) cos 2B + El sin® 1 cos h%]
%, = - % 3 s1n® 1 cost® 1 [}(2 - sin’ i) sin 2B - 3 sin® i sin hé]

and u’/ is calculated as before.

T.3 Eﬁergy and the related constent E are found using variants

of the previous formulas

2E 1 2 . .2 2 1 2
5 > (uo + uo) - 2u [:A + N (3 - cos OOE]

P cos 1
ﬁ = E% + A? cos2 i
Y

A change in the calculation of E is made necessary by the change
in significance of p.

7.4 The functions B, and b, are evaluated as in 5.7. Since

1
(El and M GE are ldentical with those for the basic method, it is

only necessary to note that now




8619-6004-TU-000
Page 65

3

Q@2=Acoshisin21[§n-%sinza-%sino+%sin (20+Zaﬂ

+p sin® 1 cos® i E g- cos o - %3 cos (2p-0)
+ % cos (o+2B) - %3 cos (30-2B)

+ % cos (30) - %6 cos (3o+26)}

2 3 1
+ p cos rl [ﬂ cos o - -l—zrcos 30]

-
L 1
+ A cos rl [- o+ 3 sin ZU.J

K =2‘:p2cosui(-%coshi-%coszi-%sinhi-%é

+ A cos8 i (%f cos® i - % cosh i

+ )3: fsin2 i- % sinh i)]

There is no change in the treatment of Hl’ Py, and c

.

1

T5. After evaluating the necessary quantities at the initisal
time, the lov eccentricity program, like the one from which it is
derived, reads position and velocity components corresponding to
some later time. Again the formulas of 5.5 and 5.6 (with low
eccentricity modifications) are applied, as in 5.9, to obtain
various parameters including a o with which to enter the two
iterative loops. The procedure for finding P is unchanged,

but the iteration which yields u, p, and i is modified by using

s inz 1)
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i

2 2
W, =P sin g + A cos” 1 + A ail(ik+l’6) + A a21(ik+1,6)

2 2 2 2 . .
Py = SOF ikﬁl[}s + A sin (1k+1 + io) sin (io'1k+1i]
- A [%p cos @ a21(1k+1’6) +2p sin o all(ik+1’B)

-2 cos2

3 1 2 2
1w, (§-- sin” 1, sin BE]
2 2 2
- [:all(ik+l,a) +ag, (1, ,1,8)
+ 2p cos o azz(ik+l,5)+ 2p sin ¢ a12(1k+1’Bi]

instead of the formulas which appear in 5.11.
7.6 Computation of position and velocity components, etc.

is as described in 5.12, except that for calculating the eccentri-

city we use

2,2 4 2
eA”cos 1=p + A [:2 p cos o a21 +2psingo al;]

21 2
+ A [éll + agl +2pcos g aéz + 2 psin o alé]

Unfortunately, the low eccentricity modification has not given
as satisfactory numerical results as the basic program. The B
iteration converges, but to a limit which differs significantly from
the value computed from the comparison coordinates. For one test
orbit, there is a position error of ten thousand feet only five minutes
from the epoch. Since the details of the analysis are much more

complicated than the programming, which is of the sort in which
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FORTRAN is particularly helpful, the difficulty probably lies in
carrying out esnalytic proceedures according to the principles set
forth in Sections 2, 3, and 4. To cope with such complicated
routine analysis, we badly need more sophisticated programs for

algebraic language manipulation.
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8. POLAR ORBITS
In this section we apply periodic surface theory to the determination
of polar orbits of a particle in the field of an oblate spheroid. There
18 some novelty in the treatment, as will be noted in the appropriste

places. The orbit is plane; taking polar coordinates in this plane

and writing
Ta l ('2 + 2 62) V= | ﬂ-z (£ - 00526)
2 r ’ T r 3 '3 ’

ve get the Lagrange equations

. 2
¥=re -8 - QE%E— (% - cosze) ,

2

r r
d 2. uJR®
S r% = B sin 260.
dt r3

Here R 18 the earth's equatorial radius, J is a dimensionless constant
measuring the earth's oblateness, and p = GM, where G is the gravita-
tional constant and M the earth's mass. The initial values at

)

t = O are ryr T o? 90. We introduce

0’
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rzé-h, u:—--i-, )\-u.mz,

and take h and u as new dependent variables and © as the new

independent variable. Introducing z = du/dt the equations for u,z,

and h are
2
g—%--u+ﬁg+)\ [%(%-cosae)-gzsinzeg% , (8.1)
h h h
%rthinZG .

An integral of this system is the energy E, which has the expression,

in terms of the variables u, z, h, and 8,

2 .
E-%‘— z2+ud:|-uu+)\u3(%+%cosze). (8.2)

In order to bring the equations (8.1) into a form suitable for the
application of periodic surface theory we introduce the variables p

ana ¢ through the equations

B du _ 5 cos o .
u hz p 8in o, F T o (8.3)

Ve gét the equacions
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%g =\ {EE u sin o sin 20 - cos 0[12 uz(% + %‘- cos 20) -o—ﬁf u cos o sin zﬂ]

h

da 2 .sinaf3 21 1 P
a§=1+7\[p-ﬁhucososin29+ p‘[hzu(6+2c0829)+h2ucosusin29

(8.4)
%%-%uamae, %—gsl,

where u in equations (8.4) is obtained from (8.3). Let Rz’ Rl, 92 , 91 be the

coefficient of N in the equations for p, h, o, and © respectively

(91 = 0). Then a calculation shows

M(R,) = 0, M@ ) =0, MR, =0, M@, - 'Z‘—h,; . (8.5)

Since M(Rl) = M(Rz) = O we may calculate integrals of the form

[ [}
h+) N (h, p, 0, ©) = const.,p + Ng (h, p, o, 8) = const.,
k k
k=1 ‘ k=1

using the Diliberto algorithm (described in Section 3). However
_we will consider an alternative change of variables; rather than p and o ve

introduce E and o0, where E is given by (2) and o by

o = tan™t (u - i—z-) /z . (?-6)
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We note that o is the same in both variable changes. From (8.2) and

(8.6) we get
1 2 w2 2 2WS 11
5 (2B + B ) = (u - 55)% csc® 0+ =5 (z + 5 cos 20), (8.7)
h” h h h

from vhich we get u as a function of E, h, 0 and ©. We note that,

to the first order in A, we have

h nl¢ h

2
A l 1 1l : 1/2
u-'-‘-z-+g sin ¢ - — 8in °(EF + ¢ sin 0)3(6+§°°° 20), ;-ﬁ-(zm +:‘§) / .
The equations for E, h, 6, and o are (primes indicate differentiation

with respect to 8)

E’ =0, h’ = % (hl‘T + { sin o) 8in 20, 6/ = 1, (8.9)

u;=1+7\[§£—(%+;sino) cosésinae
h't h

+ .3_.;.1;“__” (Ji- + § sin 0)2(%- + -]é'- cos 26)
h°t b

+l2 sin o cos ¢ sin 20 (E§- + ¢ 8in oﬂ .
h h

The equations for h and o are valid to the first order in A since we have

h

used only the O'P order term in(8.8). Let the coefficients of A in the

equations for h and o be R and § respectively.
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For the system (8.9) we have the integral E = conatant; we seek

nov, using the Diliberto algorithm, an integral of the form

[
h +-§:)ka(h, E, 0, ) =@, O« constant, (8.10)
k=1 |

vhere fk pas period 2x in o and in 6. Using the operators M, Q, and P
described in Section 3 a necessary condition for the existence of an
dntégral of form (8.10) is MR = O; this is easily verified. The *unction

fl in (8.10) 1s given by
fl(h’ E, o, @) = &R + s(h: E, '): (8.11)

vhere ¥ = 0 - © and g is the periodic solution (1f 1t exists) of

- ’%‘5— ’ (8.12)

subject to some convenieni normalization, e.g.,g(h,E,%) = O, A calculation

shows that

QR = - §;§ cos 26 + 5& sin .(26-0) - 6& sin (26+0) , (8.13)

M@ = L,
h

2
2 2 2
MPQR = + L sin 2y - £ sin by .
3 3
6h 12h 6Ln
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Thus the periodic solution of (8.12) does exist and has the expression

2 , 2
g(h,E,¥) = - <3.I-'_§ + %-2% {cos 2¢+1) + :%E%u (cos ly-1).
h

(8.14)
We now solve for h in h + M‘l(h,E, 0,0) = a ; we get, valid to the first
order in.o,
h -_G - Ml (G,E’,U,Q) » (8-15)
and substituting (8.15) in the equation for o in (8.9) we get again valid
to be first order in A,
o'=1+7\[2 ("-f-z+§o sin o) cos ¢ sin 20
o't, d
3 8in o 2,1 . 1 (8.16)
+ (b + t_ 8in 0)°(z + 5 cos 20)
F Tt b E+3

+3‘-2 sin ¢ cos o sin 20 (EE+§ sin oﬂ ,
a a °

vhere { = (28 + uz/a)l/z/a'.

The solution of (8.16) can be obtained by Diliberto's secord

algorithm; however we will use here the simple procedure of replacing

ek itz

o 3 S
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o on the right side of (8.16) by v + 6, where o = o . vhen 6'= §_and

Y =0, - 90. On making this substiitution of v + © for o let c be the
constant term of the Fourier expansion of the coefficient of A; the
Fourier expansion has only a finite number of terms. A calculation
shows that ¢ = p./2ab'. Then it is easily seen tha.f. the approximate

solution of {8.16) is
o =71+ (14+Ac)0 + Nf(0), (8.17)
vwhere £(8) 18 of period 2n and is given by

] ' .
£(0) = - c® +[ [- c + 3}— (&5 + ¢, sin (r+9)) cos (y+8) sin 20
o @y \@ '

3 B 21 .1
+ sin (7+8) + sin ( +6)) (> + = cos 20)
2 (az b 8in (r g*3

ago

+ :-!2 sin (y+8) cos (y+8) sin 26 (27 + ¢, ein (v+0))ae

18
" - P—E o [ {(—%— + — ) sin (8+r)+(—-—6§— -—T) sin (©-7)

2a

%o
+ cos 20 - —-—— sin (0+2y) - cos (204+27)
-2%11: 16 of ;;E

11 ¢ 4
+ 76 + g\ sin (33“’7') - -o—z- sin (304'37‘) - -3-EK cos (he.',zr)
ba’t, 16a / 8o o0

>t sin (5e+3r)} ae . (8.18)

16a°
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We substitute the expression for o (8.17) in (8.15) to obtain h as a

function of ©. In doing this we make use of the approximation

sin (20-0) = sin (- v + (1-Ac)®) -A£(8) cos (-y+(1-Ac)O) (8.19)

together with several other similer approximations. We get

: 4 ¢
h=a+A ;§§.COB 20 - E% sin (-y + (1-Ac)O) + 5% sin (y + (3+\c)0)

2 2 .
+ (555 + ;%;g) (cos 2 (r+hec®) +1) - ;%8; (cos W(y+NcO) -1;]

= Q + Ml(e) . . (8.20)

This expression for h is valid to the first order in \; we have neglected
the second term on the right of (8.19), and the same term in the other similar
approximations.
We are in position now to write u = r~1 as a function of ©.
Referring to (B.8) we will make the following substitutions in order to
obtain a valid first order expression: in the coefficient of A we will
rgplace { by go, h by a, end 0 by v + (1L+Ac¢)0; in the remaining terms

wve make the following substitutions
h=at+ %hl(e),

ag 28
=20, + 3&2 ()hl(e))= 6 * (Egag _,152) '%hl(e):
0

gin 0 = sin (y+(14Ac)8) + Af(8) cos (y+(1+Ac)O).



8619-600k4-TU-000
Page T6

We get then the following expression

%.- = E? + go gin (y+(14Ac)0)

2

a .
+ )‘[[ - E_%l + (-c-a-iq; - —i—‘3 ) 8in (r+(1+4Ac)0) hl(ea¥ ;of(G) cos (r+(1+4Ac)0)
a
)
] ;%E. sin (r+(14hc)o) (;!zi + ¢ stn (r+(143c)8)’(z + 3 cos aeﬂ (8.21)
)

It is clear that (21) is a velid approximation only if t, is not small
(high eccentricity case). If ;O is small it is necessary to apply the low

eccentricity transformations described in Section 2.



8619-6004-TU-000
Page T7

9. EQUATORIAL ORBITS

If the earth gravitational potential is assumed to be independent
of longitude; then a class of planar orbits is possible, namely,
those in a plane containing the polar axis. Such orbits are
discussed in Section 8. Another;, and far simpler, class of
Planar orbits exists if the earth is assumed to be symmetric
with respect to its equatorial plane. These orbits lie in the
equatorial plane and (allowing only the second harmonic as a

perturbation) are described by solutions of the differential equation

2
A
N (9.1)

dw

0N

This special case has been used repeatedly in this report to
illustrate and motivate the expansion techniques. At the expense
of duplicating some of these statements, a more.extensive analysis
will be given in this section.

The specialization to equatorial orbits is frequently useful
in the evaluation of a general perturbation scheme since it is
easy to obtain both quantative and qualitative information about
the solutions of the differential equation. These can then be
compared with the formulas which are to be evaluated. Another
reason for studying equatorial orbits is that some of the important
properties of thé general orbits can be examined in detail. For example,

a8 satellite can be considered to be moving on a slow;y rotating
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ellipse in its instantaneous orbit plane with a period (say,

from perigee to perigee) depending on the oblateness parameter.

This representation can be made precise for equatorial orbits. The
formulas describing the orbits can be given exactly in terms of
elliptic functions or approximated by truncating a convergent power
series in the oblateness parameter. As was pointed out in Section 2,
the small eccentricity difficulties can be recognized and easily
overcome when only equatorial orbits are considered.

It should be emphasized that since equation (9.1) has periodic
soluticons corresponding to the unpertur ed elliptical orbits, the
basis difficulty of the general problem disappears, namely that due
to the (conjectured) almost periodic motion of the satellite. In
particular, since the angular momentum vector is constant, the
conjectured second integral becomes trivial, and the torus on
which the orbits are assumed to lie becomes simply a closed curve.
It should also be noted that while a periodic solution to the
differential equation (9.1) determines a closed curve in the u,
du/dw plane, the corresponding curve in the orbit plane need not
be closed.

It is helpful to forget temporarily the source of equation (9.1)

and to consider it as describing the one dimensional motion of a

~ particle in a position dependent force field. The variable u can be

considered as the displacement. The energy integral can be written

du,2

&) + V(u) = 2EA/, (9.2)



8619600k -TU-000
Page 79

vhere the "potential energy"” is given by

V(u) = u® - 2Au - -g- a3 (9.3)

The basic qualitative properties of the solutions can be

studied from the graph of V(u). We have

v
\

*
There are two equilibrium points A and A , which are the solutions

to the gquadratic equation

u=A+A uz (9.4)

obtained from (9.1) by setting dzu/dw2 equal to zero. The circular
*

orbit in the equatorial plane corresponds to the smaller root, A .

If 0 <A <1/L4, the two roots are distinct. It is clear from the

graph that the motion will be periodic if and only if

v(a") < 2EA/u < V(a,) . (9.5)

V4
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As usual, we can find the period (in the w variable) by integrating

& femafs - V()IYE, (9.6)
i.e, a
2
Period = 2x/k(A) = 2f [2EA/p - v(u)]"l/zdu, (9.7)
u
1

where V(ul) = V(uz) = 2EA/u w, <u,. Clearly k(A) is an
analytic function with k(0) = 1. Since V(u) is a cubic, equation
(9.7) can be written in terms of elliptic integrals (see [7],
Chapter XIII).

If the oblateness parameter is set equal to zero, the graph
of V(u) is a parabola end all the solutions for the differential
equation are periodic. These solutions are classified by their
energy

elliptic if V(A) <2EA/p <O
parabolic if 2EA/u = O

hyperbolic if O < 2EA/u .

A similar classification can be made for the perturbed problem,
however two new types of orbits must be considered. The first
is a bounded (in u) non-periodic solution corresponding to the

energy level 2EA/p = V(A,). It is given by

u(w) =a+b tanh® c(w - Vo) (9.9)
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where a, b and ¢ can be found by substituting this expression

into the differential equation (9.1). Orbits with higher energy
are unbounded in u. This means that they spiral into the attracting
body. For the perturbed problem, the orbits of primary interest
are the perturbations of the elliptic orbits with energy bounded by
V(’A*) < 2EA/u < 0. Tt should be noted that the non-zero angular
momentum must be specified before the change in variable which

gives equation (9.1) can be made.

Finally, we note that although the solution (9.9) is bounded
in r if ¢ <A < 3/16, a satellite on such an orbit would collide
with the earth in very short time if the fact that the earth has
finite extent is used.

Let us now return to the perturbation problem. Approximate
solutions to (9.1) can be most easily generated by using the
classical technique due to Lindstedt [5]. A new independent variable
is introduced by q = k(A)w, where k(A) is to be determined. (The
notation of (9.7) is béing used deliberately, since the two scale

factors are in fact identical). Then with u(q/k) = u(q), we have

a% - -2
k(?x)-—§+u=A+7\u (9.10)
dq
Now we assume that
i(q) =Z%363(q) (9.11)

5=0
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where the ﬁj are periodic functions with period 2x. If we let

K2(A) = 1 +Zw" .y (9.12)
30

insert these expressions into (9.10) and equate coefficients

of Aj, ve get an infinite set of differential equations of the form

a% a%u
] - o
5 + uj = LJ(q) - a.j > ’ (9‘13)
aq dq
where the Lj is a function of ﬁm, m < J and the constants a_,
m < j. For each such equation, the corresponding aJ can be

uniquely chosen so that resonance is avoided, i.e., so that ﬁj(q)

is a periodic function. This process can be justified by using the
implicit function theorem to prove that the differential equation
(9.1) has periodic solutions depending analytically on A for
appropriately restricted initial conditions. The period 2n/k(A)

is of course given by (9.7). For our present purposes the important

fact is that the solution can be expasnded in the form

a(w) -.-Zx? 3, (k0. (9.14)
3=0
Let us now compare this with the formulas from the Diliberto

procedure. As usual, we introduce polar coordinates

*
u=A +ssin g, %% =scos @ . (9.15)
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The energy integral (2.2) becomes

* 2 2 2 2EA
2 - A*2 - % 2 A*3 +2NA s“sin”“ @ + 3 A g3 sin3 g+ o

This cubic equation can be solved for s as a function of @.

We have

s= ) We,(9)

5=0

This is the equation of the periodic one-surface, i.e. the simple
closed curve, on which the solution lies. The motion on this curve

is described by the solution to (see(2.24))

*
%g =1 - A sin’ @(2a + s(P) sin @) .
A change in variable is now made,
-
q =8 +) N'B (%)
1 n*"’?
n=1

where the Bn are periodic functions with period 2nx. They will be

selected so that
- J
EE; = 1+ ;%nc .
dw n
n=1
Once this is done, (9.19) is inverted to give

n
¢=%+Zx%@)
n=1
[ J
n
q_lz(l+Z?\Cn)V
n=1

The solution u(w) is given by

=4+ s(@) sin ¢

(9.16)

(9.17)

(9.18)

(9.19)

(¢.20)

(9.21)

(9.22)
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where P(w) is defined by (9.21).

Comparing this to the Lindstedt formula (9.14), we see that

L]
n
q=gq, and k(\) =1 +Z)\ c -
n=1
The Diliberto procedure is easily justified in this special

case. We need only note that if F(@,\) is analytic in A and has

period 2x in @. then if

%?, =1 + NF(F,N), (9.23)
we can determine B(@,\) and k(A) so that
q =@ + AB(@,\) implies %% = k(A) . (9.24)

To do this, we differentiate the q equation and write the result

as

A g—'; = =1 +k(A)/(1 +AF) . (9.25)

B will be periodic if k(A) is selected so that the mean of the

right side of this equation vanishes. That is,
M [x(A) /(L +NF)] =1 . (9.26)

Having made this choice, we integrate (9.25) to obtain the

periodic function B(@,\). The variable q is now defined by (9.24).
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By construction dq/dw = k(A). Since the functions are analytic
‘in A, the expansion procedure can be use& to compute e, and Bn'
The fact that the general procedure as given in Section L
reduces to (9.19) can be shown by an induction argument which
will not be given here. Finally,we note that if the small
eccentricity change is not made, a similar argument can be given.

However, the variable r. must be bounded away from zero, or the

l

series will not converge.
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10 AN ILIUSTRATIVE EXAMPLE

In the first sections of this report, the problem
of recognizing the periodic surface is treated as follows:
If the equations are given in rectangular coordinates we
introduce polar coordinates in the phase space to bring
the equations into the form (3;2). Periodic integrals
of the form (3.3) are then sought; these integrals, solved
for ry and r,, are the periodic surfaces. The manner in
which polar coordinates are introduced to bring the
equations into form (3.2) is crucial. If it is not done
properly integrals of the form (3.3) may not exist. It may
be possible to change variables in equation (3.2) so that
the new equations have the same form and, further, have
periodic integrals with an expansion resembling (3.2);
this is done in section 6 of [3]. This technique is not
alwvays applicable, as we will now show by presenting an
example in which, although periodic surfaces do exist,
polar coordinates must be introduced with care of integrals

of the form (3.3) are to be obtained.
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We consider the problem of finding periodic surfaces for the

equations

X 4+ %X =N, y oy = A . (10.1)

If we introduce the variables ¢ and "
E=x+y, nN=X-Y,

we get the uncoupled equatiohs

E+r (AN E=0, N+ (1A n=0, (10.2)
from which we get the integrals

éz + (1-2N) gz = const , ﬁz + (14+N) nz = const, (10.13)
or

(i+i)a + (1--7\)(x+y)2 = const, (i-y)z + (1+7\)(xuy)2 = const. (10.4

‘These are the periodic surfaces in the phase space of x, X, y, ¥ .

We can also see this if we write (10.2) in the following way

%%:é: %%:-(1-)\)5, g—‘:'}:ﬁ’ gﬂ='(l+7\)q,
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and introduce polar coordinates

{ =1, 8in 61 s t=ry J1-\ cos 8, 0= r, 8in 92,‘ﬁ =r, N1\ cos 8, .

We get then

dr ae dr ae
w0 g VIR, e, g -V

80 that r = constant and r, = constant; this is equivalent to (10.3)
and (10.4)
If however we write (10.1) in the form

%"* ’ g’% =-x+N, %% -y, g% = -y + A

and introduce polar coordinates

b3 :se'r‘:l sin 01 sy X = rycos 8 , y- r,8in6, , §y= r, cos 6, (10.5)

ve get the equations

drl = A\r, cos 6, sin ©
2 1l 2’
del =1 - A fﬁ sin O, sin ©
r, 1 2 !
(10.6).
dr2

T - lrl cos 62 s8in el ,

ae rl

iT = 1 -2 = sin 9’ sin ©

2 2
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The M operator applied to the right sides of the equations for ry
and rz yields non-zero quantities. Thus there are no integrals of

the form
r, + Kk f (r,,r.,8., 6,) = const, r, + %kg (r,,r.,9,,6,) = const
1 k' F1°72%1 P2 » T2 k' F12722%1°% .

On the other hand the periodic surfaces (10.4) do exist. Putting (10.5)

in (10.4) we get the following form of the integrals of the system (10.6);

. 2 2
r, +r, + 2r,r, cos (e2 - el) - A (r1 8in 6, + r, sin 92) = const,

2
1l 2 172

2 2 2
ry + T, - 21T, Cos (92_- el) + N (rl sin 6, - r, sin 02) = const.

2 1°2 1

. What this example indicates is that although periodic surfaces exist
it may take more than the introduction of polar coordinates to

detect them.

(10.7)
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